快捷导航

2023年西安交通大学818高等代数与线性代数考研考试大纲及参考书

[复制链接]
dayday 发表于 2022-11-7 16:02:32 | 显示全部楼层 |阅读模式 打印 上一主题 下一主题

2023年高等代数与线性代数考试大纲

考试形式和试卷结构

参考书

《高等代数》,王萼芳,石生明,高等教育出版社。第四版

一、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

二、试卷内容结构

高等代数约80%

线性代数约20%

三、试卷题型结构

计算题4小题,每小题10分,共40分

解答题(包括证明题)8小题,共110分

高等代数与线性代数

一、行列式

考试内容

行列式的定义、行列式的性质、行列式的计算、Cramer法则

考试要求

1.理解行列式的定义、行列式的性质.

2.掌握行列式的计算.

3.了解Cramer法则并会应用.

二、线性方程组

考试内容

高斯消元法、向量空间、线性相关(无关),极大线性无关组、向量组的秩,矩阵的秩、线性方程组有解判定、线性方程组解的结构

考试要求

1.理解向量空间、线性相关(无关),极大线性无关组、向量组的秩,矩阵的秩的概念.

2.掌握高斯消元法.

3.掌握线性方程组有解判定、线性方程组解的结构

三、矩阵

考试内容

矩阵的运算、矩阵逆、矩阵乘积的行列式、矩阵的分块运算、初等矩阵、矩阵在初等行(列)变换下的标准型

考试要求

1.理解矩阵的基本概念.

2.掌握矩阵的基本运算,包括矩阵乘法,求逆.

3.了解矩阵的分块运算,并学会应用.

4.掌握初等矩阵及矩阵在初等行(列)变换下的标准型.

四、二次型

考试内容

二次型的矩阵表示、二次型的标准形、惯性定律、正定二次性及其判定

考试要求

1.理解二次型的基本概念.

2.掌握二次型的矩阵表示及化二次型为标准形的方法.

3.掌握惯性定律、正定二次性及其判定.

五、线性空间

考试内容

线性空间的概念、基、坐标、维数定理、基变换与坐标变换、子空间、子空间的交与直和、子空间的同构

考试要求

1.理解线性空间的概念,基、坐标、维数定理、基变换与坐标变换。

2.掌握线性空间的运算,包括子空间、子空间的交与直和.

3.了解子空间的同构。

六、线性空间

考试内容

线性变换的定义、线性变换的运算、线性变换的矩阵、特征值与向量空间、矩阵相似于对角矩阵、线性变换的值域与核、不变子空间、极小多项式、Jordan标准形

考试要求

1.理解线性变换的定义、线性变换的运算。

2.理解线性变换的矩阵及在不同坐标变换下线性变换的矩阵间的关系.

3.掌握特征值与向量空间的概念与运算。

4.掌握矩阵相似于对角矩阵的条件。

5.了解并掌握线性变换的值域与核、不变子空间、极小多项式、Jordan标准形。

七、欧几里得空间

考试内容

标准正交基、Gram-Schmidt正交化、正交变换、子空间、实对称矩阵正交相似标准形、向量到子空间的距离、最小二乘法

考试要求

1.理解欧式空间的基本概念。

2.掌握Gram-Schmidt正交化、正交变换.

3.掌握子空间、实对称矩阵正交相似标准形。

4.了解向量到子空间的距离、最小二乘法。

八、双线性函数与辛空间

考试内容

线性函数、双线性函数、对偶空间

考试要求

1.理解线性函数、双线性函数的基本概念。

2.了解对偶空间的概念。

九、多项式

考试内容

一元多项式的概念、最大公因式、Euclid辗转相除法、因式分解定理、不可约多项式、Eisenstein判别法

考试要求

1.理解一元多项式的概念,运算。

2.掌握最大公因式、Euclid辗转相除法.

3.掌握因式分解定理、不可约多项式、Eisenstein判别法。

想了解更多可关注新祥旭陕西考研公众号。


最后别忘了到沪学网下载免费课程!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

信息推荐

更多+

最新信息

更多+
关闭

站长推荐上一条 /1 下一条

关注我们:

官方微信

APP下载

官方群:651222885

官方QQ群